
Calculation of optimum multicomponent 
solvent compositions for polymers using a 
multiple regression program 

D.  W .  B e h n k e n  
American Cyanamid Company, Stamford, Connecticut, USA 
(Received 26 January 1 982; revised 19 April 1982) 

A useful prediction of the solubility of a polymer in a particular solvent can be obtained by comparing 
their respective solubility parameters. The solution to the problem of finding solvent mixtures with 
maximum polymer interaction, already available for binary and ternary mixtures, has been extended to 
cover any number of components. This report also points out that the theoretical optimum composition 
(for two or more components) can be calculated by using a multiple regression program. The easy 
availability of such a program on most computers offers the occasional user an alternative to writing a 
special program for the purpose. 
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INTRODUCTION 

In recent papers Froehling et al. 1'2 and Rigbi 3 have 
discussed the problem of predicting optimum solvent 
mixtures for polymers and have provided solutions for 
binary 3 and ternary 2 mixtures. This work is based on the 
solubility parameter model (Hildebrand 4) which states 
that the energy of mixing is related to the energies of 
vaporization of the pure components by the expression 
AEmix=2122V(`51-`52) 2, where AEmi X is the energy of 
mixing, 21 and 22 are the volume fractions of the 
components, V is the volume of a mole of the mixture and 
5̀1 and ,52 are the mixture component solubility 
parameters expressed as the square root of the cohesive 
energy densities. Letting AEvap be the energy of 
vaporization and Vm the molar volume, 62 =AEvap/V m. 

Using Hansen 5, 6 z can be described as the sum of three 
contributing components, `52 = `52 and 5̀2 + 82 where (~d, `sp 
and 6h are the respective solubility parameter 
contributions from dispersion forces, dipole forces and 
hydrogen bonding (or donor-acceptor) interactions. 
Since the solubility parameters of a mixture are simply the 
(volume) average of the solubility parameters of the 
components, the problem of finding a good solvent 
mixture is that of finding the volume fractions that 
produce the closest possible solubility parameter match 
to the polymer, thereby minimizing the energy of mixing. 
The concept of closeness, however, involves distance in 
the three-dimensional space defined by the solubility 
parameter components 6a, `sp, `sh and not simply the 
magnitudes of the respective 6's. 

It must be mentioned that interactions not predicted by 
this simple theory can occur (particularly strong 
hydrogen bonds) which will spoil the predictive ability of 
the method. In general, however, the approach will 
provide useful estimates of solubility. 

BINARY AND TERNARY SOLVENTS 

Using the notation of Froehling and Hillegers I the 
solubility parameters (for dispersion, polar and hydrogen 
bonding forces) are represented by three-dimensional 
vectors. For solvents we use the vectors a, b, c . . . .  , for the 
polymer, p, and for the solubility parameters of the 
optimum solvent mixture, the vector m. Departing 
slightly from their notation, we let 21,22,.).3 . . . .  represent 
the volume fractions of the solvents a, b, c . . . .  respectively, 
in the optimum mixtures. As the references 1'2 point out, 
the optimum solution, m, is obtained by finding the 
perpendicular projection of p onto the line between the 
endpoints of a and b for a binary mixture or onto the plane 
through the a, b and c endpoints for a ternary solvent 
mixture. This provides a solvent mixture whose solubility 
parameters are closest to those of the polymer as 
measured by the distance (A) in the three-dimensional 
solubility parameter space. 

For a binary solvent this implies that 22, the optimum 
volume fraction of b in the mixture, is obtained by solving 
the equation 

(b -a) ' (b -a)22=(b-a) ' (p -a)  (1) 

or 

22=~,~=,(bs-as)(Pj-aj) 
y.~=~(bs_as)2 (2) 

where the subscripts (j = 1,2,3) denote the three elements 
of the corresponding vectors. The proportion of a is 
obtained from 

21=1- -22  
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and the solubility parameters of the optimum mixture 
from 

m = 21 a + ~,2 b (3) 

Inmultiple regression analysis 6, data are used to fit an 
equation of the general form 

y=bo+blx l  +b2x2+ ... +bkXk (4) 

expressing a dependent variable, y, as a function of k 
independent variables xa, x2 . . . .  Xk. The intercept b o is 
optional and may be excluded from the model if desired. A 
set of N observations on each of the variables is needed as 
input data to fit the model and these data can be 
represented by the N-dimensional vectors y, x~, x2 . . . . .  Xk. 
The program provides least-squares estimates of the 
regression coefficients bo, b~ . . . . .  bk as well as other useful 
calculations to be described later. 

To adapt this to the solvent problem we let the number 
of observations correspond to the dimensions of the 
solubility parameter vectors, so in all cases N =3. The 
intercept flo is deleted from the model. Then for a binary 
solvent we fit the equation 

p=2xa+A2b (5) 

subject to the restriction that 21 +22 = 1. The easiest way 
to contend with this restriction is to substitute 21 = 1 -22  
and restate the model as 

p - a = 2 2 ( b - a  ) (6) 

Using the solubility parameter data to calculate the 
necessary input for the regression program let 

y = p - a  
(7) 

X 1 = b - a  

and fit the regression model 

y = b l x  I (8) 

The estimated regression coefficient, b 1, provided by the 
program is identical to the value obtained from equation 
(2). Therefore 

)~2 = b l  

)h =1--22 

For a ternary solvent the same approach yields the 
regression input variables 

y = p - a  

x 1 = b -  a (9) 

x 2 = c - - a  

needed to fit the regression equation 

y=b lx l  +b2x2 (10) 
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The regression coefficient estimates provided by the 
multiple regression program are identical to those 
obtained from equation (4) in Froehling and Hillegers I. 
The volume fractions 21, 2 2 and 2a for components a, b 
and c respectively are obtained from 

21 = 1 - b 1 - b  2 

~,2 = b l  (11) 

/'3 = b2 

The other values of interest to those calculating 
optimum solvent compositions are also available from a 
typical multiple regression program. The three predicted 
values )1, )32 and 333, obtained by substituting the 
estimated regression coefficients into equations (8) or (10) 
at the three input values of xl (and x2) form a vector .f. 
These values are provided by the program and can be used 
to calculate the solubility parameters of the optimum 
mixture, namely 

m=fi+a  (12) 

Alternatively, they can be obtained directly from 
m=21a+22b binary solvent or m=Rla+22b+23c ter- 
nary solvent or from the residuals which are also printed 
out by most regression programs. The three residuals, 
defined as the difference between the input y values and 
the predicted values .f can be though of as a vector, r 

r = y - f i  (13) 

Using these residuals, the optimum mixture parameters 
can be calculated from the expression 

m = p - r  (14) 

The distance, A, of the optimum solvent mixture from the 
polymer in the solubility parameter space is also available 
from the regression output. The residual sum of squares 
variously labelled as RSS or Error SS is defined as 

3 3 
2 (15) RSS = Z (Ys-33fl2= Z rj 

j = l  j= l  

and is equal to A 2. Therefore 

A = ~/(Residual sum of squares) (16) 

The reason that the solution for the optimum solvent 
mixture is mathematically identical to the least-squares 
solution is that minimization of the distance A is in fact 
minimizing the residual sum of squares when the 
substitutions indicated by equations (7) and (9) are made. 
The equations given in refs. 1 and 2 for the 21 are 
recognizable as the familiar normal equations 
encountered in least squares 6 when the restriction that Ebi 
= 1 is imposed. 
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If a flexible statistical package such as SAS (Statistical 
Analysis System) or Minitab is used, only the solubility 
parameter data need be entered, i.e. p, a, b, c. The other 
calculations such as equations (7), (9), (12), (14), (15) can be 
programmed for the computer to handle. Otherwise, a 
minor amount  of hand calculation is required. 

Example: Ternary solvent mixture (solubility parameter 
data from Froehling and Hillegers 1) 

Solubil i ty b 
parameters p a TrichloroL c 
( j l / 2  cm--3/2) Nylon-6,6 Water ethylene n-Propa nol 

6 d 18.54 12.28 17,97 14.90 
6p 5.12 81.30 3.10 6.70 
6 h 12.28 34.20 5.30 17.40 

The volume fractions 

22=b 1 

and 
A = ~/(residual sum of squares) 

(19) 

To obtain the optimum mixture parameters we can use 
either 

m = y  + a + ~3(c- a) (20) 

or the alternative approach for calculating m given by 
equation (141 which would be simpler in this case. 

If we want the best solvent for nylon-6,6 in the example 
above, yiven that the mixture is 5% water, we need the 
following input calculations: 

The regression variables are calculated from these to 
obtain" 

y = p - - a  x l = b - a  x 2 = c - - a  

6.26 5.69 2.62 
-76 .18  --78.20 -74 .60  
--21.92 --28.90 --16.80 

y = p -  b - 0.05(a - b) 

x~ =(c-b)  
(21) 

Note. here that the role of a was altered since water was 
the component selected to be fixed. The roles of b and c 
could of course be reversed except that bl would provide 
)-z instead of 23. The regression input would follow as: 

The output obtained from a regression package would 
then supply the required values b~, b2,.~, r and the residual 
sum of squares. From this we have the values given in 
Froehling and Hillegersl : 

22 = bj =0.474 

~3 =b2 =0.524 

21 = 1 - 2 2 - 2 3  =0.002 

The optimum mixture vector is given by 

y + a = m 

4.068 1 2.28 1 6.348 
--76.128 81.30 5.172 
--22.492 34.20 11.708 

andA = ,,/(5.134 428) = 2.266. 
The regression approach can also be used when the 

object is to set one (or more) components at a fixed 
fraction of the solvent mixture and then find the optimum 
fractions for the other two. If we want a ternary mixture 
with the third component c at a specified fraction, ~3, the 
procedure requires calculation of 

y = b - a - ~ 3 ( c - a  ) 

x I = b - a  
(17) 

and then fitting the model 

Y=blxl (18) 

Y = P - b - 0 - 0 5 ( a - b )  x 1 = ( c - b )  

0.8545 -3 .07  
--1.8900 3.60 

6.5350 1 2.10 

After running the regression we have in hand the 
estimate of b~=0.341, the residual sum of squares 
= 15.3196 and the vector of residuals r. 

From these we have: 

23 =0.341 

22 =0.050 

and 
"~'1 = 0 . 6 0 9  

A = ~/(15.3196) = 3.91 

To calculate m directly we can either use equation (14), i.e. 

O - -  r = gD 

18.54 1.901 16.348 
5.12 3.117 5.172 

1 2.28 1.410 11.708 

or equation (20). In this case, however, m=y+b+O.05 
(a-b) (since b, not a, was used as the origin in this 
example). 

Non-feasible solutions 
In the examples given above, feasible solutions were 

obtained in that all the 2 i fell in the interval between 0 and 
1 and the results could be interpreted as determining a 
mixture of components. The equations used to solve for 
the 2 i do not guarantee this. The problem they solve is to 
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8p 

Figure I B i n a r y  s o l v e n t  g e o m e t r y  

- -  5 d 

find the linear combination of the solvent vectors in 
solubility parameter space that minimizes the distance 
from the polymer vector, subject to the restriction that Z2~ 
= l. They do not add the restriction 

0~<2i~<1 i=1,2 . . . .  

As pointed out by Froehling and Hillegers I when negative 
values and values in excess of unity are obtained, it is 
simply saying that the best attainable solvent mixture is to 
be found with fewer components. Geometrically, for a 
binary solvent, the projection o f p  onto the line passing 
through the endpoints of vectors a and b fails to fall in the 
interval between them. This segment between a and b is 
the locus of all feasible solutions. In Figure I, polymerpl  
yields a solution with physical meaning (0~<22 ~< 1) while 
P2 does not (22 > 1). The best choice for this polymer is 
solvent b since the shortest distance to a feasible solution 
(A~) is obtained at b (22 = 1, 21 =0). 

In Figure 2a the ternary solvent locus of feasible 
solutions (all 0<2~< 1 and ~2~= 1) is represented by the 
shaded triangular region of the plane through the 
endpoints of a, b and c. The polymer Pl yields a solution 
that falls in this area. To visualize the projection problem 
more easily, an alternative picture of the space is shown in 
Figure 2b. The origin has been shifted to a by subtracting a 
from every vector, and the plane through a, b, c has been 
rotated into the position of the horizontal plane. All 
relative positions remain unchanged. For polymer Pz, 
when one solves the equations and finds m2, the 
projection ofpz onto the plane of a, b and c, it falls outside 
the shaded area of feasible solutions. The shortest distance 
to a feasible solution is found by projecting onto the line 
connecting a and c which says that the optimum solvent 
m~ is a mixture of solvents a and c. A~ is the length of this 
shortest projection. A polymer such as P3 would find the 
shortest distance to the region of feasible solutions at b 
which says the pure solvent b provides the best match. (If 
the polymer vector p falls within the region of feasible 
solutions, the solvent match is perfect and A = 0.) 

This geometric insight illustrates why non-feasible 
solufons are obtained and shows that for these cases the 
best solution must lie on the boundary of the region. To 
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find the best mixture then, once a non-feasible solution is 
obtained, the approach is to solve the problems formed by 
dropping each solvent one at a time and finally to 
calculate the pure solvent distances, e.g. for a 

) A = ~/[(p - a)'(p - a)] = p , -  a,)2 (22) 
i=  

The latter is necessary since, even though an a, b, c mixture 
does not provide a feasible solution, and the two- 
component b, c mixture does provide a useful result, when 
the A's are compared, the pure solvent a might provide the 
smaller value. 

Figures 2a and b also illustrate the connection between 
the regression problem and the problem considered here. 
When the origin is shifted to point a by subtracting a from 
the other vectors and the labelsy, xl, x2 are substituted as 
indicated in equations (7) and (9), this is the geometry of 
the least-squares regression problem 6. The restriction 
that ~ 2  i = 1 causes the shift of the origin, the choice of the 
particular solvent a being completely arbitrary. To find 
the least-squares solution the length A of the vector r 
(equations (13) and (16)) must be minimized, which results 
in the perpendicular projection onto the line, plane or 
hyperplane in which the x vectors lie. In a usual regression 
application of course, N, the number of elements in the 
vectors, is not limited to three. 

FOUR- OR MORE C O M P O N E N T  SOLVENTS 

For a four-component solvent the region of feasible 
solutions in general is bounded by a tetrahedron as shown 

a 

b 

5 

Oh \~P2 

2 

5d 

Ai I i 

(m2o) (c-o) 

3 
Figure2 (a) Ternary solvent geometry. (b) Transformed ternary 
solvent geometry 
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8h 

Figure 3 Four-component solvent geometry 

in Figure 3. In this case, as well as for binary or ternary 
mixtures, dependencies among the solvent vectors are 
possible that reduce the dimensionality of this region. 
This implies that the composition of the optimum mixture 
is not unique, the same m vector being attainable by more 
than one (in fact an infinity of) composition(s). To 
illustrate geometrically, this occurs in a ternary mixture 
when the endpoints of a, b and c all fall on the same line 
and in a four-component system when a, b, c and d 
endpoints fall in a plane. The interior solvent is redundant 
in these cases and can be eliminated from the problem if 
desired without changing the optimum vector m. 

In the general four-component case, regression using 
the variables 

y = p - a  

xt  = b - a  

x 2 = c - a  
(23) 

and the model 

x 3 = d - a  

y = b l X  1 +b2x2q-b3x 3 (24) 

will lead to a solution with A = 0 as long as the vectors x~, 
x2, and x3 are independent. In other words, the mixture 
will have the same solubility parameters as the polymer (p 
=m). Just as before, however, only ifp lies within or on the 
surface of the feasibility region will the solution have any 
physical significance. If so, then 

b l  = A 2  

b2 =,~+3 

b 3 =,;t 4 
(25) 

I - -  ,~2 - -  J~3 - -  ,~4 =,)+1 

component mixtures must be investigated for the smallest 
A as described earlier. 

Example: Four-component solvent mixture (solubility 
parameter data from Froehling and Hillegers 1 and 
Rigbi 3) 

Solubi l i ty p 
parameters Poly(methyl-  a b c 
(j 1/2 cm--3/2) methacrylate) n-Propanol Toluene MEK 

6 d 15.74 14.9 18.05 15.7 
6p 8.20 6.7 1.40 9.0 
6 h 6.70 17.4 2.00 5.1 

d 
Chloro- 
form y = ( p - a )  x 1 = ( b - a )  x2 = ( c - a )  x 3 = ( d - a )  

1 7.7 0,84 3.15 0.8 2.8 
3.1 1.50 --5.30 2.3 - 3 . 6  
5.7 --10.70 --15.40 --12.3 --11.7 

The solution, resulting in a perfect match of the 
solubility parameters (A=0, p=m) ,  for poly(methyl 
methacrylate) was found to be: 

Solvent Volume fract ion Regression coeff. 

n-Propanol ~-1 = 0.140 1 -- b 1 -- b2 - b3 
Toluene X2 = 0.044 b l  
MEK h 3 = 0.792 b 2 
Chloroform X 4 = 0.024 b 3 

It is mathematically possible that a polymer that fails to 
give feasible solutions with a set of four solvents can be 
brought inside the feasibility region by adding additional 
solvents which increase the size of the polyhedron. The 
computational approach then becomes an iterative one 
since the equations are of rank 3 and will only support 
solving for three unknowns, i.e. the solution is not unique. 
To do this using the regression approach would involve 
setting all but four of the solvents at fixed fractions, 
solving the resulting equations and checking the 2is for 
feasibility. If not all 0 ~< 2 i ~< 1 then a methodical scanning 
of a grid of possible values for ).5,2~,,... could be made, 
calculating trial solutions at each point. 

For example, if six components a, b, e, d, e , f  were to be 
investigated, we might check a grid of values for )-5 and 26 
varying each in steps of 0.1 but keeping (25 + 26) < 0.9. For 
a typical solution we might set 25=0.1 and 26=0.2, 
calculate the regression variables 

y = p - -  a-- 25(e-  a)--)~6(f- a) 

x 1 = b - a  

/ 3  ~-..~ C - -  a 

x 3 = d - a  

(26) 

and all 0~<21~< 1. 
If the 2is are not feasible, then all three-, two-, or one- and fit the model of equation (24) to find )-1,22, 23 and 2+ 
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(21 = 1 -  ~ =  22i). Once a solution is found, an infinity of 
variations is possible in the neighbouring region of the 
solubility parameter space. 

The regression approach would not be efficient unless a 
package such as SAS were/available which could easily be 
instructed to generate the whole set of different y vectors 
and sequentially provide all the regression solutions. For 
values of 25 and 2 6 that produce solutions promisingly 
close to feasibility, it will be necessary to investigate this 
region with a finer grid. 

Some results obtained using the above procedure with 
SAS to find optimum (A = 0) six-component mixtures for 
poly(methyl methacrylate) are given below. 

Volume fractions 

Solvent Mixture 1 Mixture 2 Mixture 3 

Toluene 0.026 0.040 0.008 
MEK 0.755 0.778 0.71 8 
Chloroform 0.020 0.020 0.016 
DMF 0.020 0.007 0.040 
n-Propa nol 0.120 0.134 0.100 
Butyl acetate 0,059 0.021 0.11 8 

NUMERICAL ASPECTS 

In solving the linear equations to find the ;t~ values, 
experience has shown that the equations may be very 
poorly conditioned as a result of close similarities in the 
solvent vectors a, b, c, d,... If this occurs, it is important 
that double-precision arithmetic is used on the computer 
to avoid obtaining grossly incorrect solutions. Hand 
calculation is not generally recommended. It should be 
noted that although the four- (or more) component 
problem can be solved by the regression approach, it is 
really the degenerate case of least squares in which the 
number of observations equals the number of unknowns. 
If the four-component problem were to be solved directly, 
the following set of three equations in three unknowns 
should be used instead of the least-squares normal 
equations 

(b - a)22 + (c -  a)23 + (d -  a)2,~ = (p -  a) (27) 

The extension to more components simply involves 
subtraction of the fixed components from the right-hand 
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side as suggested by equation (26). Some multiple 
regression programs may not have adequate checks built 
in to cope with cases that result in zero values for the 
residual sum of squares. No problems should be 
encountered in calculating ttle regression coefficients but 
error messages may result from the subsequent statistical 
analysis which involves division by functions of the 
residual sum of squares. 

SUMMARY 

A computer approach is described which utilizes any 
multiple regression package for calculating the 
composition of a solvent mixture that gives maximum 
interaction with a polymer. The only requirement is that 
the program permits fitting the general model 

y = b l X  1 q-b2x2-]- . . .  -I-bkX k 

without a leading constant term (intercept). The input 
variables needed for the computer are easily calculated by 
hand from the polymer and solvent solubility parameter 
vectors. Ira regression package such as SAS or Minitab is 
available, it can be easily programmed to perform these 
calculations so that only the solubility parameters need be 
entered. 

The approach has been extended to cover mixtures of 
more than three components and to allow optimum 
mixtures of solvents to be formed when one or more 
components are preset at fixed levels. 
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